Finite Action Klein-Gordon Solutions on Lorentzian Manifolds

نویسنده

  • V. V. Kozlov
چکیده

The eigenvalue problem for the square integrable solutions is studied usually for elliptic equations. In this note we consider such a problem for the hyperbolic KleinGordon equation on Lorentzian manifolds. The investigation could help to answer the question why elementary particles have a discrete mass spectrum. An infinite family of square integrable solutions for the Klein-Gordon equation on the Friedman type manifolds is constructed. These solutions have a discrete mass spectrum and a finite action. In particular the solutions on de Sitter space are investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Wave Equation on Asymptotically De Sitter-like Spaces

In this paper we obtain the asymptotic behavior of solutions of the Klein-Gordon equation on Lorentzian manifolds (X, g) which are de Sitterlike at infinity. Such manifolds are Lorentzian analogues of the so-called Riemannian conformally compact (or asymptotically hyperbolic) spaces. Under global assumptions on the (null)bicharacteristic flow, namely that the boundary of the compactification X ...

متن کامل

Analytical solutions for the fractional Klein-Gordon equation

In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.

متن کامل

Soliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions

In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are object...

متن کامل

ar X iv : 0 70 6 . 36 69 v 1 [ m at h . A P ] 2 5 Ju n 20 07 THE WAVE EQUATION ON ASYMPTOTICALLY DE SITTER - LIKE SPACES

In this paper we obtain the asymptotic behavior of solutions of the Klein-Gordon equation on Lorentzian manifolds (X, g) which are de Sitterlike at infinity. Such manifolds are Lorentzian analogues of the so-called Riemannian conformally compact (or asymptotically hyperbolic) spaces. Under global assumptions on the (null)bicharacteristic flow, namely that the boundary of the compactification X ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006